Discussion of "Global Bank Lending and Exchange Rates" by Becker, Schmeling, and Schrimpf

Yang Liu

University of Hong Kong

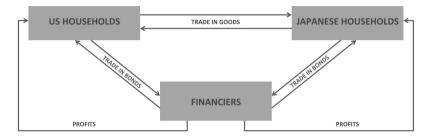
Motivation

- Recent advances in international finance with imperfect financial markets (Maggiori 2022 Handbook Chapter)
 - to understand financial crises and the ensuing policy response (e.g., Quantitative Easing and FX intervention)
 - deviations from arbitrage (CIP deviations)
 - more generally the impact of capital flows on exchange rate

This paper:

- Banks' cross-currency lending flows affects FX
- Micro data and estimation with GIV
- Valuable evidence supporting this rising literature

Complete Market Benchmark


• Exchange rate is the SDF differentials

$$e_t = m_t^* - m_t$$

• No role for quantity and demand elasticity

A Model with Financial Frictions

• Gabaix and Maggiori (2015)

• Preference shocks generates international trade and capital flows

$$C_t = [C_{NT,t}^{\chi_t} C_{H,t}^{a_t} C_{F,t}^{\iota_t}]^{\frac{1}{\chi_t + a_t + \iota_t}}$$

$$\underbrace{\xi_0 e_0 - \iota_0}_{NX} + \underbrace{q_0}_{financier\ position} + \underbrace{f^*}_{exo\ flow} = 0$$

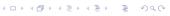
A Model with Financial Frictions

 Financiers intermediate capital flows and take expected excess returns, limited by the constraint

$$\max_{q_0} V_0 = E[\beta(R-R^*\frac{e_1}{e_0})]q_0$$

$$s.t.\ V_0 \geq \Gamma q_0^2/e_0$$

• demand function: larger demand for higher expected return


$$q_0 = \frac{e_0}{\Gamma R} E[R - R^* \frac{e_1}{e_0}]$$

Implication 1: When foreign banks increase their lending in USD, the USD appreciates

• Exchange rate level

$$e_0 = \frac{(1+\Gamma)\iota_0 + E(\iota_1) - \Gamma f^*}{2+\Gamma}$$

- ullet Trade (endowment, productivity, preference) shock $\iota_0{\uparrow}$
 - RHS: US capital inflow, dollar lending is $q_0 \uparrow$
 - LHS: expected return on dollar $E[r-r^*rac{e_1}{e_0}]\uparrow$, dollar depreciate $e_0\uparrow$
- Exogenous flow for dollar $f^*\uparrow$
 - RHS: dollar lending is $f^* \uparrow$
 - LHS: financier dollar position $q_0\downarrow$, expected return on dollar $E[r-r^*\frac{e_1}{e_0}]\downarrow$, dollar appreciate $e_0\downarrow$
- Endogeneity (simultaneity): exogenous-lending and macro-driven lending have the opposite results

Implication 2: Tighter USD funding conditions amplify the effect

Exchange rate level

$$e_0 = \frac{(1+\Gamma)\iota_0 + E(\iota_1) - \Gamma f^*}{2+\Gamma}$$

- Tighter USD funding conditions: larger Γ
 - low broker-dealer leverage

	Low Leverage	High Leverage		
$\Delta NCCL_{c,t}$	78.29	-35.31		
	(25.65)	(76.72)		

- low US bank reserve holdings
- low share of interbank loans granted to foreign banks
- a higher concentration of reserves among the major US banks

	Share of reserves		Share of loans to foreign banks		Reserve concentration	
	High	Low	High	Low	High	Low
$\Delta \text{NCCL}_{c,t}$	-68.43 (50.51)	98.69 (22.88)	-0.803 (48.34)	134.7 (38.17)	79.63 (29.88)	47.85 (34.43)

Implication 2: Tighter USD funding conditions amplify the effect

- Tighter USD funding conditions:
 - monetary policy cycles

	Fed Cycle			
	Hike	ike No Change Eas		
$\Delta \mathrm{NCCL}_{c,t}$	100.9 (18.87)	21.20 (49.83)	-22.38 (144.7)	

- Suggestion: policy rate levels
 - 6% to 5% (easing) is tighter than 1% to 2% (hiking)

Implication 2: Higher intermediation costs for FX swap providers amplify the effect

- f* takes currency risk: short euro, long dollar
- For part of the lending, lenders swap the liability with a financier to short synthetic dollar
- Financier: long synthetic dollar, short dollar, subject to a constraint
- Pre-GFC, little constraint, dollar lending $\uparrow\uparrow$, $f^*\uparrow$, $e\downarrow$
- Post-GFC, large constraint, dollar lending $\uparrow\uparrow$, $f^*\uparrow\uparrow$, $e\downarrow\downarrow$

		Pre-GFC			Post-GFC	;
$\Delta \mathrm{NCCL}_{c,t}$	26.63	14.40 (25.91)	18.90	125.6	110.4	71.95
	(15.05)	(25.91)	(18.98)	(26.63)	(18.56)	(18.04

Implication 3: Higher net lending flows should lead to larger CIP deviations

Financier: long synthetic dollar, short dollar, subject to a constraint

$$f^{cip} = \frac{e_0}{\Gamma^{cip}R}[R^*\frac{f_0}{e_0} - R]$$

- CIP deviation $R^* rac{f_0}{e_0} R > 0$, widen with f^{cip}
- Endogeneity (reverse causality): Avdjiev et al (2019) triangular relationship:
 - LHS: dollar ↑, borrower risk ↑
 - RHS: dollar lending ↓
 - CIP deviations ↑

Comment: Convenience Yield

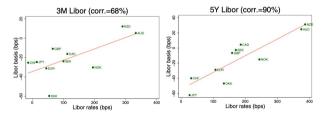
Investors' utility

$$u(c_t, f_t^*) = \underbrace{w(c_t)}_{utility\ from\ C} + v(\underbrace{f_t^*}_{USD\ bond\ demand\ shifter}; \underbrace{\theta_t}_{})$$

• Exchange rate level (Jiang, Krishnamurthy, Lustig (2020))

$$e_t = -E_t \sum_{\tau=0}^{\infty} \lambda_{t+\tau} + E_t \sum_{\tau=0}^{\infty} (r_{t+\tau}^* - r_{t+\tau}) - E_t \sum_{\tau=0}^{\infty} r p_{t+\tau} + E_t \lim_{\tau \to \infty} e_{t+\tau}$$

- Convenience yield $\lambda_{t+\tau} = \frac{v'(f_t^*; \theta_t)}{w'(c_t)} > 0$
- Demand shifter $\theta_t \uparrow$
 - RHS: convenience yield $\lambda_t \uparrow$, lending in dollar $f_t^* \uparrow$
 - LHS: dollar appreciates $e_t \downarrow$
 - financier dollar position $q_0\downarrow$, expected return on dollar $E[r-r^*\frac{e_1}{e_0}]\downarrow$, dollar appreciate $e_0\downarrow$
- Question: how much is λ_t and how much is rp_t ?



Comment: Economics Magnitude

- The economic magnitude is useful to
 - policy practice (FX intervention)
 - discipline model parameters
- An increase in foreign banks' outstanding USD loans by 100 bp results in
 - an appreciation of the USD by 72 bp
 - an increase of CIP deviation by 2-4 bps
 - Avdjiev et al (2019): "a 1 percent appreciation of the broad dollar index is associated with a 2.4 basis point decrease in the cross-currency basis"
- "42.25bn USD additional net lending flow into the USD, leads to an appreciation of the USD by 36 basis points"
 - net exports 700 bn USD, appreciate 6%
 - GM: "the flow is comparable to 1 year worth of US net exports would induce the Dollar to appreciate 10%"

Comment: US Specialty

- The analyses are not specific to US
- Suggestion: consider variations in different currencies
 - interact $\Delta NCCL_{c,t}$ with CIP in currency c
 - countries with large negative basis (Japan) have a large elasticity
 - countries with positive basis (Australia) have a small elasticity

- Suggestion: consider net cross-currency bank lending in other currencies
 - segmented local currencies with illiquid swap: large elasticity and effect on CIP
 - global currencies: small elasticity

Comment: Instrument

$$\begin{split} NCCL &= loan \ c \ to \ US - loan \ US \ to \ c \\ \Delta^{inflow}_{c,t} &= \sum_{j \in c} \Delta l^c_{j,USD,t} \times w^c_{j,t-1} - \frac{1}{N_c} \sum_{j \in c} \Delta l^c_{j,USD,t} \\ \Delta^{outflow}_{c,t} &= \sum_{j \in US} \Delta l^c_{j,c,t} \times w^c_{j,t-1} - \frac{1}{N_{US}} \sum_{j \in US} \Delta l^c_{j,c,t} \\ \Delta z_t &= \Delta^{inflow}_{c,t} - \Delta^{outlow}_{c,t} \end{split}$$

- Suggestion: consider $\Delta_{c,t}^{inflow}$ and $\Delta_{c,t}^{outflow}$ separately
 - USD elasticity may be different from c
- ullet Suggestion: consider interbank loans granted to foreign banks in the US as Δl_j

Conclusion

- Highly recommend!
- A lot of new thought-provoking facts
- The results support past research and guide future research